www.EquipmentAnchorage.com

OF

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

11-1703 JOB NO.

8/16/17 DATE

SHEET

SHEETS

ELEVATION AT WALL PLATE (P5080F MOUNT SHOWN)

NOTES:

1. FORCES ARE DETERMINED PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 1.5, Ω_0 = 1.5, $z/h \le 1$)

HORIZONTAL FORCE (Eh) = 2.64 Wp HORIZONTAL FORCE (Emh) = 3.96 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THIS PREAPPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

11-1703 JOB NO.

8/16/17 DATE

SHEET

SHEETS

STEEL STUD WALL SECTION (P5080F MOUNT SHOWN)

WOOD STUD WALL SECTION (P5080F MOUNT SHOWN)

	UNIT	SELF WEIGHT (lb.)	MAX MONITOR WEIGHT (lb.)	"A" (in.)	"B" (in.)	"C" (in.)	Tu (lb.)	Vu (lb.)	# OF SCREWS
	P2642F	10	130	11.66	4.18	3.64	138	114	4
	P4263F	12	175	18.66	4.22	3,6	181	154	4
*	P5080F	19	300	34.98	4.24	3.58	156	132	8

* UNIT USED IN CALCULATIONS

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, 1p = 1.5, 1p

WEIGHT = 319 LB

HORIZONTAL FORCE (Eh) = 2.64 Wp = 842 LB

VERTICAL FORCE (E_v) = 0.44 W_p = 141 LB

SCREW FORCES:

TENSION (T) (CALCULATION SHOWS WORSE CASE VERTICAL BOLT SPACING OF 5")

$$T_{u \text{ VERTICAL}} = \frac{(1.2(319\#) + 141\#)(2")}{4 \text{ SCREW}} = 34 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{842\#(2'')(4.24'')}{1\text{screw}(34.98'')(7.82'')} = 26 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{842 \# (4.24")}{4 \text{screws} (7.82")} = 114 \text{ LB/SCREW}$$

 $T_{u MAX} = 34# + (0.3)(26#) + 114# = 156 LB/SCREW (MAX)$

SHEAR (V)

$$V_{u \text{ MAX}} = \sqrt{\left(\frac{1.2(319\#) + 141\#}{8 \text{ screws}}\right)^2 + \left(\frac{842\#(4.24")}{4 \text{ screws} (7.82")}\right)^2} = 132 \text{ LB/SCREW (MAX)}$$

BOLT SPEC: 1/4"ø TEK SCREWS

 $\Phi T = 418 LB/SCREW$

ΦV = 362 LB/SCREW

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{156}{418}\right) + \left(\frac{132}{362}\right) = 0.74 \le 1.0$$
 ... O.K.

SCREW SPEC: 5/16"" WOOD SCREWS

φT = 724 LB/SCREW φV = 336 LB/SCREW

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{156}{724}\right) + \left(\frac{132}{336}\right) = 0.61 \le 1.0$$
 .°. O.K.

www.EquipmentAnchorage.com

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

JOB NO. 11-1703

DATE 8/16/17

3

OF 6 SHEETS

* UNIT USED IN CALCULATIONS

12

19

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

175

300

STRENGTH DESIGN IS USED (Sps = 2.20, 2p = 1.0, 2p = 1.5, 2p

4.22

4.24

3.6

3.58

239

205

214

183

4

8

WEIGHT = 319 LB

P4263F

P5080F

HORIZONTAL FORCE (Emh) = 3.96 Wp = 1263 LB

VERTICAL FORCE (Ev) = 0.44 Wp = 141 LB

BOLT FORCES:

TENSION (T) (CALCULATION SHOWS WORSE CASE VERTICAL BOLT SPACING OF 5")

18.66

34.98

$$T_{u \text{ VERTICAL}} = \frac{(1.2(319\#) + 141\#)(1.5")}{4 \text{ SCREWS}(7.82")} = 25 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{1263\#(1.5'')(4.24'')}{1\text{screw}(34.98'')(7.82'')} = 29 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{1263\#(4.24")}{4screws(7.82")} = 171 LB/SCREW$$

$$T_{u MAX} = 25# + (0.3)(29#) + 171# = 205 LB/SCREW (MAX)$$

SHEAR (V)

$$V_{u \text{ MAX}} = \sqrt{\left(\frac{1.2(319\#) + 141\#}{8 \text{ screws}}\right)^2 + \left(\frac{1263\#(4.24")}{4 \text{ screws} (7.82")}\right)^2} = 183 \text{ LB/SCREW (MAX)}$$

BOLT SPECS: 1/4" HILTI HUS-EZ \$\phi\$T= 0.75 \$\phi\$Nn = 623 LB/SCREW (TENSION) \$\phi\$V= \$\phi\$Vn = 836 LB/SCREW (SHEAR)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 12$$

$$\left(\frac{205}{623}\right) + \left(\frac{183}{836}\right) = 0.55 \le 12 \quad \text{...} \quad \underline{\mathsf{O.K.}}$$

www.EquipmentAnchorage.com

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

JOB NO. 11-1703

DATE 8/16/17

SHEET

4

_F 6 sheets

ELEVATION AT WALL PLATE (P5080T MOUNT SHOWN)

NOTES:

1. FORCES ARE DETERMINED PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDs = 2.20, 2p = 1.0, 1p = 1.5, 2p = 1.5, 2p

HORIZONTAL FORCE (En) = 2.64 Wp HORIZONTAL FORCE (Emh) = 3.96 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THIS PREAPPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

JOB NO. 11-1703

DATE 8/16/17

SHEET

5

of **6** sheets

STEEL STUD WALL SECTION (P5080T MOUNT SHOWN)

		WALL MOUNTED
)	(4)- 8M (GR 2) M. SCREWS TO MONITOR	3" MIN
	2 x STUDS OR 4 x BLKG (DOUGLAS-FIR LARCH NUMBER 2 MIN.) (DESIGNED BY STRUCTURAL ENGINEER OF RECORD)	
)	USE 4- 5/16"" x 4" WOOD SCI TO WOOD STUD OR BLKG. (PRE-DRILL HOLES —— TO 70% SHANK DIAMETER)	REMS
	5/8" THK. WALL BOARD	

WOOD STUD WALL SECTION (P5080T MOUNT SHOWN)

	UNIT	SELF WEIGHT (lb.)	MAX MONITOR WEIGHT (lb.)	"A" (in.)	"B" (in.)	"C" (in.)	Tu (lb.)	Vu (lb.)	# OF SCREWS
	P2642T	12	130	11.66	4.73	3.09	181	127	4
	P4263T	15	175	18.66	4.74	3.08	124	85	8
*	P5080T	22	300	34.98	4.77	3.05	199	145	8

* UNIT USED IN CALCULATIONS

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, p = 1.5, Rp = 1.5, $z/h \le 1$)

WEIGHT = 322 LB

HORIZONTAL FORCE (Eh) = 2.64 Wp = 850 LB

VERTICAL FORCE (E_V) = 0.44 W_p = 142 LB

SCREW FORCES:

TENSION (T) (CALCULATION SHOWS WORSE CASE VERTICAL BOLT SPACING OF 5")

$$T_{u \text{ VERTICAL}} = \frac{(1.2(322\#) + 142\#)(3.25")}{4 \text{ SCREWs}(7.82")} = 55 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{850 \# (3.25'') (4.77'')}{1 \text{screw} (34.98'') (7.82'')} = 48 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{850\#(4.77")}{4\text{screws}(7.82")} = 130 \text{ LB/SCREW}$$

 $T_{UMAX} = 55# + (0.3)(48#) + 130# = 199 LB/SCREW (MAX)$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{1.2(322\#) + 142\#}{8 \text{ screws}}\right)^2 + \left(\frac{850\#(4.77")}{4 \text{ screws}(7.82")}\right)^2} = 145 \text{ LB/SCREW (MAX)}$$

BOLT SPEC: 1/4"ø TEK SCREWS

 $\phi T = 418 LB/SCREW$

 $\phi V = 362 LB/SCREW$

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{199}{418}\right) + \left(\frac{145}{362}\right) = 0.88 \le 10$$
 .°. O.K.

SCREW SPEC: 5/16"" WOOD SCREWS

 $\phi T = 724 \text{ LB/SCREW}$ $\phi V = 336 \text{ LB/SCREW}$

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{199}{724}\right) + \left(\frac{145}{336}\right) = 0.71 \le 10$$
 ... O.K.

www.EquipmentAnchorage.com

PREMIER MOUNTS

P-SERIÉS MONITOR MOUNTS

DES. J. ROBERSON

11-1703 JOB NO.

DATE

8/16/17

SHEET

SHEETS

UNIT USED IN CALCULATIONS

12

15

22

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

175

300

STRENGTH DESIGN IS USED (Sps = 2.20, 2p = 1.0, 1p = 1.5, 2p = 1.5, 2p

4.73

4.74

4.77

3.09

3.08

3.05

303

259

241

205

4

8

WEIGHT = 322 LB

P2642T

P4263T

P5080T

HORIZONTAL FORCE (Emh) = 3.96 Wp = 1275 LB

VERTICAL FORCE (Ev) = 0.44 Wp = 142 LB

BOLT FORCES:

TENSION (T) (CALCULATION SHOWS WORSE CASE VERTICAL BOLT SPACING OF 5")

11.66

18.66

34.98

$$T_{u \text{ VERTICAL}} = \frac{(1.2(3.22\#) + 142\#)(2.75")}{4screws(7.82")} = 47 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{1275\#(2.75'')(4.77'')}{1\text{screw}(34.98'')(7.82'')} = 61 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{1275\#(4.77")}{4screws(7.82")} = 194 LB/SCREW$$

$$T_{\text{UMAX}} = 47# + (0.3)(61#) + 194# = 259 LB/SCREW (MAX)$$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{1.2(322\#) + 142\#}{8 \text{ screws}}\right)^2 + \left(\frac{1275\#(4.77")}{4 \text{ screws}(7.82")}\right)^2} = 205 LB/SCREW (MAX)$$

BOLT SPECS: 1/4" HILTI HUS-EZ $\phi T = 0.75 \phi Nn = 623 LB/SCREW (TENSION)$ $\phi V = \phi V n = 836 LB/SCREW$ (SHEAR)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.2$$

$$\left(\frac{259}{623}\right) + \left(\frac{205}{836}\right) = 0.66 \le 12$$
 ... O.K.