www.EquipmentAnchorage.com

PREMIER MOUNTS

AM65 WALL MOUNT

DES. J. ROBERSON

8/8/19

JOB NO. 11-1703

DATE

OF

SHEETS

SEISMIC SUPPORTS & ATTACHMENTS

WALL MOUNTED

No. 4197

SHEET

STEEL STUD WALL SECTION (AM65 MOUNT)

NOTES:

1. FORCES ARE DETERMINED PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (ap = 2.5, lp = 1.5, Rp = 2.5, Ω_0 = 2.0, z/h \leq 1)

ANCHOR	MAX Sps	Ти мах	Ти мах
1/4"ø TEK SCREW	0.80	335	60
5/16"ø WOOD SCREW	1.00	396	73
5/16"ø (GR 5) BOLTS	2.20	756	152
1/4"ø HILTI HUS-EZ	0.70	600	121

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THIS PREAPPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM65 WALL MOUNT

DES. J. ROBERSON

JOB NO. 11-1703

DATE 8/8/19

SHEET 2

8 SHEETS

SEISMIC SUPPORTS & ATTACHMENTS

MAX Sps < 0.80

WALL MOUNTED

ELEVATION AT STEEL STUD WALL (AM65 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (SDS = 0.80, 20,

WEIGHT = 75 LB

HORIZONTAL FORCE (E_r) = 1.44 W_p = 108 LB VERTICAL FORCE (E_v) = 0.16 W_p = 12 LB

SCREW FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(75\#) + 12\#)(16.53")}{2 \text{ SCREWS}(7.8")} = 108 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{108\#(16.53")}{2\text{sorews}(4.08")} = 219 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{108\#}{4 \text{ screws}} = 27 \text{ LB/SCREW}$$

$$T_{u MAX} = 108# + (0.3)(27#) + 219# = 335 LB/SCREW (MAX)$$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{1.2(75\#) + 12\#}{4 \text{ screws}}\right)^2 + \left(\frac{108\#}{2 \text{ screws}}\right)^2} = 60 \text{ LB/SCREW (MAX)}$$

SCREW SPEC: 1/4"ø TEK SCREWS

 $\phi T = 412 LB/SCREW$ $\phi V = 362 LB/SCREW$

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{335}{412}\right) + \left(\frac{60}{362}\right) = 0.99 \le 1.0 \quad \text{...} \quad \underline{\mathsf{O.K.}}$$

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM65 WALL MOUNT

DES. J. ROBERSON

11-1703 JOB NO.

8/8/19 DATE

SHEET

SHEETS

ELEVATION AT WOOD STUD WALL

(AM65 MOUNT)

WOOD STUD WALL SECTION (AM65 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (SDS = 1.00, Ap = 2.5, Ip = 1.5, Rp = 2.5, $z/h \le 1$) WEIGHT = 75 LB

HORIZONTAL FORCE (Eh) = 1.80 Wp = 135 LB VERTICAL FORCE (E_V) = 0.20 W_p = 15 LB

SCREW FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(75\#) + 15\#)(16.53")}{2 \text{ SCREWS}(7.8")} = 112 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{135\#(16.53")}{2\text{screws}(4.08")} = 274 \text{ LB/SCREW}$$

$$T_{u PERP.} = \frac{135\#}{4 \text{ screws}} = 34 \text{ LB/SCREW}$$

 $T_{IIMAX} = 112# + (0.3)(34#) + 274# = 396 LB/SCREW (MAX)$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{12(75\#) + 15\#}{4 \text{ screws}}\right)^2 + \left(\frac{135\#}{2 \text{ screws}}\right)^2} = 73 \text{ LB/SCREW (MAX)}$$

SCREW SPEC: 5/16" WOOD SCREWS

 $\phi T = 724 LB/SCREW$

 $\Phi V = 234 LB/SCREW$

 $\phi V = 216 LB/SCREW$ (DUE TO BENDING)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 10$$

$$\left(\frac{396}{\mathsf{O}}\right) + \left(\frac{73}{\mathsf{O}}\right) = 089 < 10 \quad \text{and} \quad 0$$

$$\left(\frac{396}{724}\right) + \left(\frac{73}{216}\right) = 0.89 \le 1.0$$
 .°. O.K.

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM65 WALL MOUNT

DES. J. ROBERSON

JOB NO. 11-1703

DATE

8/8/19

SHEET

4

8 SHEETS

SEISMIC SUPPORTS & ATTACHMENTS

MAX Sps < 2.20

<u>WALL MOUNTED</u>

ELEVATION AT STEEL STUD WALL (AM65 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 2.5, |p| = 1.5, Rp = 2.5, $z/h \le 1$)

WEIGHT = 75 LB

HORIZONTAL FORCE (En) = 3.96 Wp = 297 LB

VERTICAL FORCE (Ev) = 0.44 Wp = 33 LB

BOLT FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(75\#) + 33\#)(16.53")}{2 \text{ BOLTS}} = 131 \text{ LB/BOLT}$$

$$T_{u \text{ PARALLEL}} = \frac{297 \# (16.53'')}{2 \text{Bolts} (4.08'')} = 602 \text{ LB/BOLT}$$

$$T_{\text{U PERP.}} = \frac{297\#}{4 \text{ BOLTS}} = 74 \text{ LB/BOLT}$$

$$T_{\text{LLMAX}} = 131\# + (0.3)(74\#) + 602\# = 756 \text{ LB/BOLT (MAX)}$$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{1.2(75\#) + 33\#}{4 \text{ BOLTS}}\right)^2 + \left(\frac{297\#}{2 \text{ BOLTS}}\right)^2} = 152 \text{ LB/BOLT (MAX)}$$

BOLT SPEC: 5/16"ø (GR 5) BOLTS

 $\phi T = 5177 LB/BOLT$ $\phi V = 2698 LB/BOLT$

$$\left(\frac{T_u}{\Phi T}\right) + \left(\frac{V_u}{\Phi V}\right) \le 1.0$$

$$\left(\frac{756}{5177}\right) + \left(\frac{152}{2698}\right) = 0.21 \le 1.0 \quad ... \quad \underline{O.K.}$$

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM65 WALL MOUNT

DES. J. ROBERSON

JOB NO. 11-1703

DATE 8/8/19

5 5

8 SHEETS

ELEVATION AT CONCRETE WALL

(AM65 MOUNT)

CONCRETE WALL SECTION
(AM65 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 0.70, Δ_p = 2.5, I_p = 1.5, R_p = 2.5, Ω_o = 2.0, z/h < 1)

WEIGHT = 75 LB

HORIZONTAL FORCE (Eh) = 1.26 Wp = 95 LB

HORIZONTAL FORCE (Emh) = 3.15 Wp = 236 LB

VERTICAL FORCE (E_v) = 0.14 W_p = 11 LB

SCREW FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(75\#) + 11\#)(15.9")}{2 \text{ screws}(7.8")} = 103 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{236\#(15.9")}{2\text{SCREWS}(4.08")} = 460 \text{ LB/SCREW}$$

$$T_{\text{u PERP.}} = \frac{236\#}{4 \text{ screws}} = 59 \text{ LB/SCREW}$$

 $T_{UMAX} = 103# + (0.3)(59#) + 460# = 581 LB/SCREW (MAX)$

SHEAR (V)

$$V_{u \text{ MAX}} = \sqrt{\left(\frac{1.2(75\#) + 11\#}{4 \text{ screws}}\right)^2 + \left(\frac{236\#}{4 \text{ screws}}\right)^2} = 121 \text{ LB/SCREW (MAX)}$$

BOLT SPECS: 1/4" HILTI HUS-EZ \$\phi\$T = 0.75 \$\phi\$Nn = 623 LB/SCREW (TENSION) \$\phi\$V = \$\phi\$Vn = 836 LB/SCREW (SHEAR)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 12$$

$$\left(\frac{581}{623}\right) + \left(\frac{121}{836}\right) = 108 \le 12 \quad \text{°} \quad \underline{\mathsf{O.K.}}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING www.EquipmentAnchorage.com

PREMIER MOUNTS AM95 WALL MOUNT

DES. J. ROBERSON

8/8/19

JOB NO. 11-1703

DATE

)

F 8 SHEETS

SHEET

SEISMIC SUPPORTS & ATTACHMENTS

<u>WALL MOUNTED</u>

STEEL STUD WALL SECTION (AM95 MOUNT)

NOTES:

1. FORCES ARE DETERMINED PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (Sps = 2.20, 2p = 2.5, 2p = 1.5, 2p = 2.5, 2p = 2.5, 2p = 2.0, 2p

HORIZONTAL FORCE (En) = 3.96 Wp HORIZONTAL FORCE (Emh) = 7.92 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THIS PREAPPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM95 WALL MOUNT

DES. J. ROBERSON

11-1703 JOB NO.

8/8/19 DATE

SHEET

SHEETS

ELEVATION AT STEEL STUD WALL (AM95 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (Sps = 2.20, 2p = 2.5, lp = 1.5, Rp = 2.5, z/h < 1)

WEIGHT = 114 LB HORIZONTAL FORCE (En) = 3,96 Wp = 452 LB VERTICAL FORCE (E_v) = 0.44 W_p = 50 LB SCREW FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(114\#) + 50\#)(16.1")}{4 \text{screws} (13.27")} = 57 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{452 \# (16.1'')}{4 \text{ SCREWS} (13.36'')} = 136 \text{ LB/SCREW}$$

$$T_{\text{U PERP.}} = \frac{452\#}{8 \text{ screws}} = 57 \text{ LB/SCREW}$$

$$T_{\text{IIMAX}} = 57\# + (0.3)(57\#) + 136\# = 210 \text{ LB/SCREW (MAX)}$$

SHEAR (V)

$$V_{u MAX} = \sqrt{\left(\frac{12(114\#) + 50\#}{8 \text{ SCREWS}}\right)^2 + \left(\frac{452\#}{4 \text{ SCREWS}}\right)^2} = 116 LB/SCREW (MAX)$$

SCREW SPEC: 1/4"ø TEK SCREWS

ΦT = 418 LB/SCREW φV = 362 LB/SCREW

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{210}{418}\right) + \left(\frac{116}{362}\right) = 0.83 \le 1.0 \quad \text{...} \quad \underline{\mathsf{O.K.}}$$

WOOD STUD WALL SECTION

(AM95 MOUNT)

SCREW SPEC: 5/16" Ø WOOD SCREWS

 $\Phi T = 724 LB/SCREW$

ΦV = 234 LB/SCREW

 $\phi V = 216 LB/SCREW$ (DUE TO BENDING)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.0$$

$$\left(\frac{210}{657}\right) + \left(\frac{116}{212}\right) = 0.87 \le 10 \quad \text{...} \quad \underline{\mathsf{O.K.}}$$

www.EquipmentAnchorage.com

PREMIER MOUNTS

AM95 WALL MOUNT

DES. J. ROBERSON

11-1703 JOB NO.

8/8/19 DATE

SHEET

SHEETS

ELEVATION AT CONCRETE WALL

(AM95 MOUNT)

CONCRETE WALL SECTION (AM95 MOUNT)

LOADS: PER 2016 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 2.5, lp = 1.5, Rp = 2.5, $z/h \le 1$)

HORIZONTAL FORCE (Eh) = 3.96 Wp = 452 LB

HORIZONTAL FORCE (Emh) = 7.92 Wp = 904 LB

VERTICAL FORCE (E_V) = 0.44 W_p = 50 LB

SCREW FORCES:

TENSION (T)

$$T_{u \text{ VERTICAL}} = \frac{(1.2(114\#) + 50\#)(15.47")}{4 \text{ SCREWS}} = 55 \text{ LB/SCREW}$$

$$T_{u \text{ PARALLEL}} = \frac{904\#(15.47")}{4 \text{ screws}(13.36")} = 262 \text{ LB/SCREW}$$

$$T_{\text{U PERP.}} = \frac{904\#}{8 \text{ screws}} = 113 \text{ LB/SCREW}$$

 $T_{IJ,MAX} = 55# + (0.3)(113#) + 262# = 351 LB/SCREW (MAX)$

SHEAR (V)

$$V_{u \text{ MAX}} = \sqrt{\left(\frac{1.2(114\#) + 50\#}{8 \text{ screws}}\right)^2 + \left(\frac{904\#}{4 \text{ screws}}\right)^2} = 228 \text{ LB/SCREW (MAX)}$$

BOLT SPECS: 1/4" HILTI HUS-EZ $\phi T = 0.75 \phi Nn = 623 LB/SCREW (TENSION)$ $\phi V = \phi V n = 836 LB/SCREW$ (SHEAR)

$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \le 1.2$$

$$\left(\frac{351}{623}\right) + \left(\frac{228}{836}\right) = 0.84 \le 1.2 \quad \text{°} \quad \underline{\mathsf{O.K.}}$$